I SIMPLEX

REMOVABLE CONCEALED CONNECTOR

SIMPLE

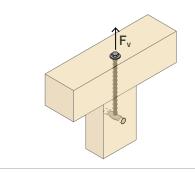
Ideal for longitudinal and transverse connections in timber subject to tension. Suitable for 12 or 16 mm diameter bolts or threaded rods.

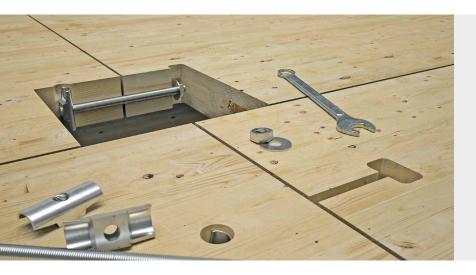
TEMPORARY STRUCTURES

Disassembled by simply unscrewing the bolt. Suitable for temporary structures or those that can be disassembled and reassembled.

CANOPIES AND SHELTERS

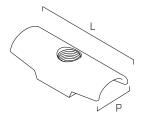
For small canopies or shelters, it can be used to create a partial joint between beam and column and stabilise the structure.




MATERIAL

cast iron with zinc plating

EXTERNAL LOADS

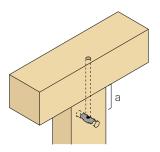

PANEL-PANEL

It can be used in panel-to-panel connections for tension connections and for pulling panels by closing the joint.

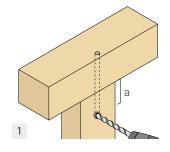
CODES AND DIMENSIONS

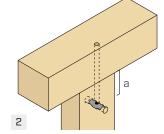
DIN 1052

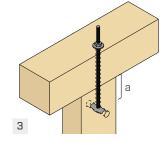
CODE	rod	L	Р	hole	L	Р	hole	pcs
		[mm]	[mm]	[mm]	[in]	[in]	[in]	
SIMPLEX12	M12	54	22	24	2 1/8	7/8	0.95	100
SIMPLEX16	M16	72	28,5	32	2 13/16	1 1/8	1.26	100

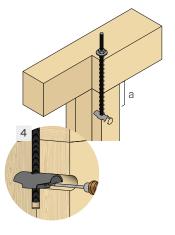

STRUCTURAL VALUES WITH DADO SIMPLEX WITHDRAWAL

BEARING STRESS RESISTANCE OF WOOD


CODE	rod	Р	L_{ef}	a ⁽¹⁾	$R_{v,k}$
		[mm]	[mm]	[mm]	[kN]
SIMPLEX12	M12	22	32	154	6,4
SIMPLEX16	M16	28,5	43,5	200	10,4




 $L_{\rm eff}$ =L-d, with d= rod diameter $^{(1)}$ a is the minimum distance from the end of the element.



INSTALLATION

GENERAL PRINCIPLES:

- Characteristic values according to EN 1995-1-1.
- Design values can be obtained from characteristic values as follows:

$$R_{v,d} = \frac{R_{v,k} \cdot k_{mod}}{V_{M}}$$

The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation.

• A timber density of $\rho_k = 350 \text{ kg/m}^3$ was considered for the calculation process.