# ALUMEGA

# PINNED CONNECTION FOR POST AND BEAM

# POST AND BEAM CONSTRUCTIONS

It standardizes the beam-to-beam and beam-to-column connections for post-and-beam systems, even with large spans. Modular components and various fastening possibilities solve all types of connections on timber, concrete or steel.

#### **TOLERANCE AND ASSEMBLY**

Axial tolerance up to 8 mm (±4 mm) to accommodate installation inaccuracies. The upper notch allows using a bolt as a positioning aid. The connection can be pre-assembled in the factory and completed on site with bolts.

#### **ROTATIONAL COMPATIBILITY**

Slotted holes allow rotation of the connector and ensure hinged structural behaviour. The rotation of the connector is compatible with the inter-story drift caused by earthquake and wind actions, reducing momentum transfer and structural damage.



USA, Canada and more design values available online.













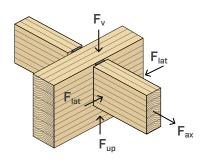




SERVICE CLASS








MATERIAL



EN AW-6082 aluminium alloy

#### **EXTERNAL LOADS**

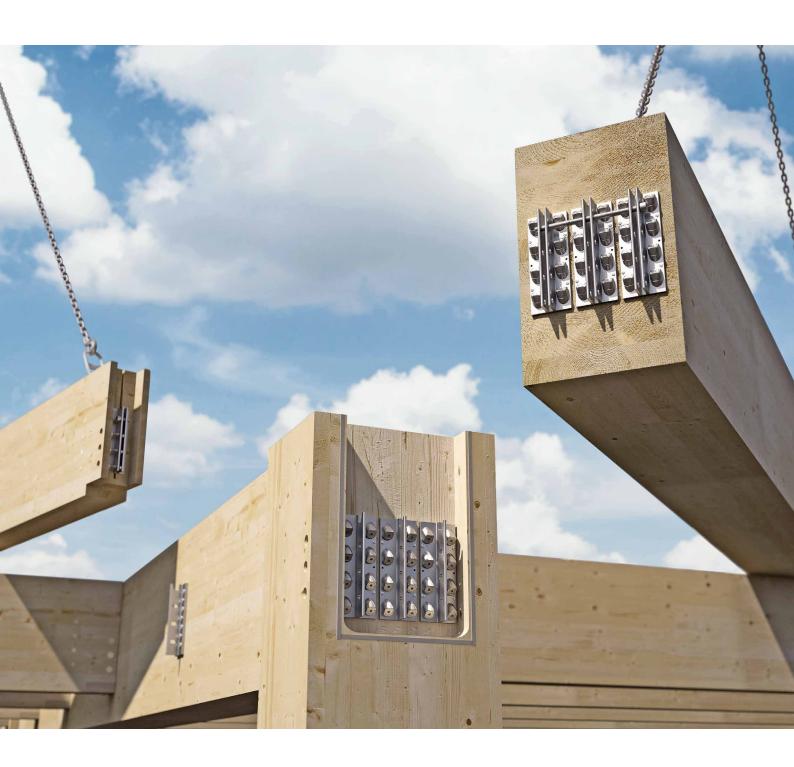


#### **VIDEO**

Scan the QR Code and watch the video on our YouTube channel








# FIELDS OF USE

Concealed joint for beam in timber-to-timber, timber-to-concrete or timber-to-steel configuration, suitable for floors and post and beam constructions, even with large spans. Use also outdoors in non aggressive environments.

Can be applied to:

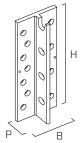
- glulam, softwood and hardwood
- LVL





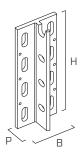
# FIRE

The multiple installation methods allow for concealed installation and fire protection at all times, possibly by inserting FIRE STRIPE GRAPHITE to seal the joist-header interface.


# **HYBRID STRUCTURES**

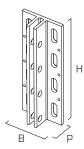
The HP version can be fixed on timber, concrete or steel. Ideal for hybrid timber-to-concrete or timber-to-steel structures.

# CODES AND DIMENSIONS


HP - main element connector (HEADER) for timber (HBSP screws), concrete and steel

| CODE         | BxHxP         | BxHxP                     | pcs |
|--------------|---------------|---------------------------|-----|
|              | [mm]          | [in]                      |     |
| ALUMEGA240HP | 95 x 240 x 50 | 3 3/4 x 9 1/2 x 1 15/16   | 1   |
| ALUMEGA360HP | 95 x 360 x 50 | 3 3/4 x 14 1/4 x 1 15/16  | 1   |
| ALUMEGA480HP | 95 x 480 x 50 | 3 3/4 x 19 x 1 15/16      | 1   |
| ALUMEGA600HP | 95 x 600 x 50 | 3 3/4 x 23 5/8 x 1 15/16  | 1   |
| ALUMEGA720HP | 95 x 720 x 50 | 3 3/4 x 28 3/8 x 1 15/16  | 1   |
| ALUMEGA840HP | 95 x 840 x 50 | 3 3/4 x 33 1/16 x 1 15/16 | 1   |



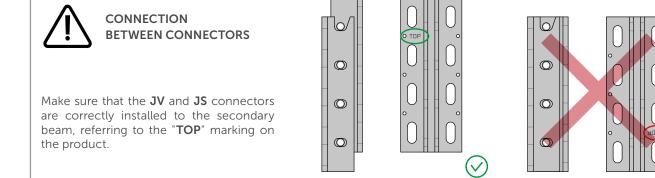

HV - main element connector (HEADER) for timber with inclined VGS screws

| CODE         | BxHxP         | BxHxP                     | pcs |
|--------------|---------------|---------------------------|-----|
|              | [mm]          | [in]                      |     |
| ALUMEGA240HV | 95 x 240 x 50 | 3 3/4 x 9 1/2 x 1 15/16   | 1   |
| ALUMEGA360HV | 95 x 360 x 50 | 3 3/4 x 14 1/4 x 1 15/16  | 1   |
| ALUMEGA480HV | 95 x 480 x 50 | 3 3/4 x 19 x 1 15/16      | 1   |
| ALUMEGA600HV | 95 x 600 x 50 | 3 3/4 x 23 5/8 x 1 15/16  | 1   |
| ALUMEGA720HV | 95 x 720 x 50 | 3 3/4 x 28 3/8 x 1 15/16  | 1   |
| ALUMEGA840HV | 95 x 840 x 50 | 3 3/4 x 33 1/16 x 1 15/16 | 1   |



JV - beam connector (JOIST) with inclined VGS screws

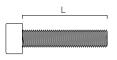
| CODE         | BxHxP         | BxHxP                     | pcs |
|--------------|---------------|---------------------------|-----|
|              | [mm]          | [in]                      |     |
| ALUMEGA240JV | 95 x 240 x 49 | 3 3/4 x 9 1/2 x 1 15/16   | 1   |
| ALUMEGA360JV | 95 x 360 x 49 | 3 3/4 x 14 1/4 x 1 15/16  | 1   |
| ALUMEGA480JV | 95 x 480 x 49 | 3 3/4 x 19 x 1 15/16      | 1   |
| ALUMEGA600JV | 95 x 600 x 49 | 3 3/4 x 23 5/8 x 1 15/16  | 1   |
| ALUMEGA720JV | 95 x 720 x 49 | 3 3/4 x 28 3/8 x 1 15/16  | 1   |
| ALUMEGA840JV | 95 x 840 x 49 | 3 3/4 x 33 1/16 x 1 15/16 | 1   |




JS - beam connector (JOIST) with STA/SBD dowels

| CODE         | BxHxP         | BxHxP                       | pcs |
|--------------|---------------|-----------------------------|-----|
|              | [mm]          | [in]                        |     |
| ALUMEGA240JS | 68 x 240 x 49 | 3 3/4 x 9 1/2 x 1 15/16     | 1   |
| ALUMEGA360JS | 68 x 360 x 49 | 3 3/4 x 14 1/4 x 1 15/16    | 1   |
| ALUMEGA480JS | 68 x 480 x 49 | 3 3/4 x 19 x 1 15/16        | 1   |
| ALUMEGA600JS | 68 x 600 x 49 | 2 11/16 x 23 5/8 x 1 15/16  | 1   |
| ALUMEGA720JS | 68 x 720 x 49 | 2 11/16 x 28 3/8 x 1 15/16  | 1   |
| ALUMEGA840JS | 68 x 840 x 49 | 2 11/16 x 33 1/16 x 1 15/16 | 1   |




The connectors can be cut in multiples of 60 mm, respecting the minimum height of 240 mm. For example, it is possible to obtain two ALUMEGA JV connectors with H = 300 mm from the ALUMEGA600JV connector.

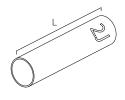


# ■ ADDITIONAL PRODUCTS - FASTENING

**MEGABOLT** - cylindrical head bolt with hexagon socket

| CODE          | material                                | d <sub>1</sub> | L    | $d_1$ | L      | pcs |
|---------------|-----------------------------------------|----------------|------|-------|--------|-----|
|               |                                         | [mm]           | [mm] | [in]  | [in]   |     |
| MEGABOLT12030 |                                         | M12            | 30   | 0.48  | 1 3/16 | 100 |
| MEGABOLT12150 | steel class 8.8<br>zinc plated ISO 4762 | M12            | 150  | 0.48  | 6      | 50  |
| MEGABOLT12270 |                                         | M12            | 270  | 0.48  | 10 5/8 | 25  |




# HEX WRENCH 10 mm

| CODE      | $d_1$ | L    | L      | pcs |
|-----------|-------|------|--------|-----|
|           | [mm]  | [mm] | [in]   |     |
| HEX10L234 | 10    | 234  | 9 3/16 | 1   |



# ALUMEGA JIG - set of jigs for installing ALUMEGA connectors side by side

| CODE         | distance between ALUMEGA HP,<br>HV and JV side by side |      |      | een ALUMEGA<br>by side | L                  | pcs   |
|--------------|--------------------------------------------------------|------|------|------------------------|--------------------|-------|
|              | [mm]                                                   | [in] | [mm] | [in]                   | [mm]               |       |
| JIGALUMEGA10 | 10                                                     | 3/8  | 37   | 1 7/16                 | 82 (1J) - 97 (1H)  | 6 + 6 |
| JIGALUMEGA22 | 22                                                     | 7/8  | 49   | 1 15/16                | 94 (2J) - 109 (2H) | 6 + 6 |



| product                    | description                           |          | <b>d</b><br>[mm] | support [mm]   | reference<br>connector                               | pag. |
|----------------------------|---------------------------------------|----------|------------------|----------------|------------------------------------------------------|------|
| HBS PLATE<br>HBS PLATE EVO | pan head screw                        | <u> </u> | 10               | 2)))]]         | ALUMEGA HP                                           | 573  |
| KOS                        | hexagonal head bolt                   |          | 12               | 27771          | ALUMEGA HP                                           | 168  |
| VGS<br>VGS EVO             | fully threaded countersunk screw      | €m       | 9                | 2)))))         | ALUMEGA HV<br>ALUMEGA JV                             | 575  |
| VGU                        | 45° washer for VGS                    |          | VGS Ø9           | 27771          | ALUMEGA HV<br>ALUMEGA JV                             | 569  |
| JIG VGU                    | JIG VGU template                      |          | VGS Ø9           | 21111          | ALUMEGA HV<br>ALUMEGA JV                             | 569  |
| STA<br>STA A2   AISI304    | smooth dowel                          |          | 16               | 2////          | ALUMEGA JS                                           | 162  |
| SBD                        | self-drilling dowel                   |          | 7,5              | 2////          | ALUMEGA JS                                           | 154  |
| LBS HARDWOOD EVO           | C4 EVO round head screw on hardwoods  |          | 5                | <i>2))))</i> ) | ALUMEGA HP<br>ALUMEGA HV<br>ALUMEGA JV<br>ALUMEGA JS | 572  |
| INA                        | the threaded rod for chemical anchors |          | 12               |                | ALUMEGA HP                                           | 562  |
| VIN-FIX                    | vinyl ester chemical anchor           |          | -                |                | ALUMEGA HP                                           | 545  |
| ULS 440                    | washer                                |          | 12               | 2)))))         | ALUMEGA HP                                           | 176  |

# ■ RELATED PRODUCTS



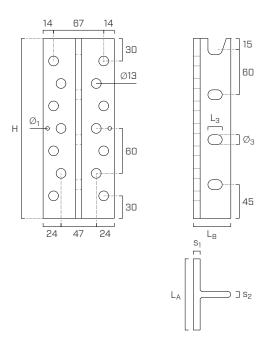
TAPS

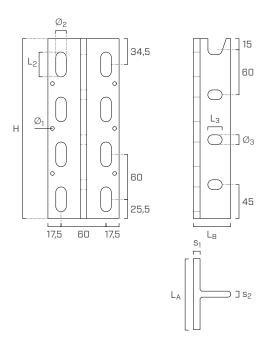






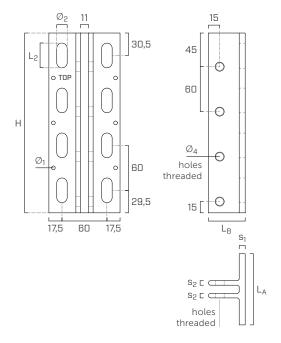


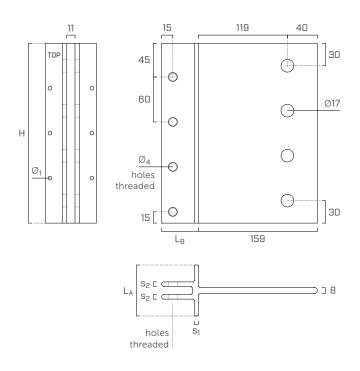

FIRE STRIPE GRAPHITE FIRE SEALING SILICONE


FIRE SEALING ACRYLIC

# GEOMETRY

 $\ensuremath{\mathsf{HP}}$  - main element connector (HEADER) for timber (HBSP screws), concrete and steel


 $\ensuremath{\text{HV}}$  - main element connector (HEADER) for timber with inclined VGS screws






JV - beam connector (JOIST) with inclined VGS screws

JS - beam connector (JOIST) with STA/SBD dowels





|                      |                          |      | HP       | HV       | J۷       | JS  |
|----------------------|--------------------------|------|----------|----------|----------|-----|
| flange thickness     | $s_1$                    | [mm] | 9        | 9        | 8        | 5   |
| web thickness        | s <sub>2</sub>           | [mm] | 8        | 8        | 6        | 6   |
| flange length        | $L_A$                    | [mm] | 95       | 95       | 95       | 68  |
| web length           | L <sub>B</sub>           | [mm] | 50       | 50       | 49       | 49  |
| small flange-holes   | $\emptyset_1$            | [mm] | 5        | 5        | 5        | 5   |
| flange slotted holes | $\emptyset_2 \times L_2$ | [mm] | -        | Ø14 x 33 | Ø14 x 33 | -   |
| web slotted holes    | $\emptyset_3 \times L_3$ | [mm] | Ø13 x 20 | Ø13 x 20 | -        | -   |
| web threaded holes   | $\emptyset_4$            | [mm] | -        | -        | M12      | M12 |

# ■ FASTENING OPTIONS

Two main beam connector types (HP and HV) and two secondary beam connector types (JV and JS) are available. Fastening options offer design freedom in terms of structural element cross-sections and strengths.

**HP** - main element connector (**H**EADER) for timber (HBS**P** screws), concrete and steel

| CODE         | HBS PLATE Ø10 | partial fastening <sup>(1)</sup><br>KOS Ø12 | VIN-FIX anchor<br>Ø12 x 245 | bolt Ø12 |
|--------------|---------------|---------------------------------------------|-----------------------------|----------|
|              | [pcs]         | [pcs]                                       | [pcs]                       | [pcs]    |
| ALUMEGA240HP | 14            | 8                                           | 6                           | 6        |
| ALUMEGA360HP | 22            | 12                                          | 8                           | 8        |
| ALUMEGA480HP | 30            | 16                                          | 12                          | 10       |
| ALUMEGA600HP | 38            | 20                                          | 16                          | 12       |
| ALUMEGA720HP | 46            | 24                                          | 18                          | 14       |
| ALUMEGA840HP | 54            | 28                                          | 20                          | 16       |

<sup>(1)</sup> Use the two outer rows of holes.

### HV - main element connector (HEADER) for timber with inclined VGS screws

|              |                                             |                                  | 2                                                 |
|--------------|---------------------------------------------|----------------------------------|---------------------------------------------------|
|              | total fastening                             | partial fastening <sup>(2)</sup> |                                                   |
| CODE         | VGS Ø9 + VGU945                             | VGS Ø9 + VGU945                  | LBS HARDWOOD EVO<br>Ø5 x 100   120 <sup>(3)</sup> |
|              | [n <sub>screw</sub> + n <sub>washer</sub> ] | $[n_{screw} + n_{washer}]$       | [pcs]                                             |
| ALUMEGA240HV | 8 + 8                                       | 6 + 6                            | 6                                                 |
| ALUMEGA360HV | 12 + 12                                     | 10 + 10                          | 10                                                |
| ALUMEGA480HV | 16 + 16                                     | 14 + 14                          | 14                                                |
| ALUMEGA600HV | 20 + 20                                     | 18 + 18                          | 18                                                |
| ALUMEGA720HV | 24 + 24                                     | 22 + 22                          | 22                                                |
| ALUMEGA840HV | 28 + 28                                     | 26 + 26                          | 26                                                |

<sup>(2)</sup> Do not use the first row of holes.

# JV - beam connector (JOIST) with inclined VGS screws

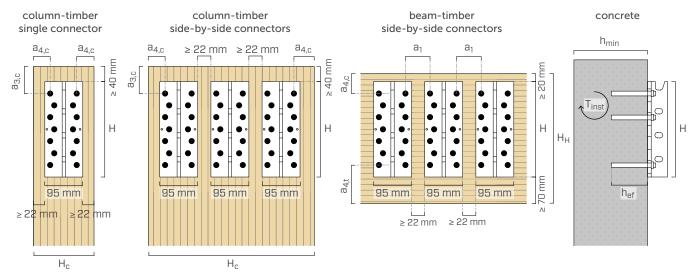
|              | 2                                           | 2                                | 2                                                 |
|--------------|---------------------------------------------|----------------------------------|---------------------------------------------------|
|              | total fastening                             | partial fastening <sup>(4)</sup> |                                                   |
| CODE         | VGS Ø9 + VGU945                             | VGS Ø9 + VGU945                  | LBS HARDWOOD EVO<br>Ø5 x 100   120 <sup>(5)</sup> |
|              | [n <sub>screw</sub> + n <sub>washer</sub> ] | $[n_{screw} + n_{washer}]$       | [pcs]                                             |
| ALUMEGA240JV | 8 + 8                                       | 6 + 6                            | 6                                                 |
| ALUMEGA360JV | 12 + 12                                     | 10 + 10                          | 10                                                |
| ALUMEGA480JV | 16 + 16                                     | 14 + 14                          | 14                                                |
| ALUMEGA600JV | 20 + 20                                     | 18 + 18                          | 18                                                |
| ALUMEGA720JV | 24 + 24                                     | 22 + 22                          | 22                                                |
| ALUMEGA840JV | 28 + 28                                     | 26 + 26                          | 26                                                |

<sup>(4)</sup>Do not use the last row of holes.

#### JS - beam connector (JOIST) with STA/SBD dowels

| CODE         | STA Ø16 | SBD Ø7,5 |
|--------------|---------|----------|
|              | [pcs]   | [pcs]    |
| ALUMEGA240JS | 4       | 14       |
| ALUMEGA360JS | 6       | 22       |
| ALUMEGA480JS | 8       | 30       |
| ALUMEGA600JS | 10      | 38       |
| ALUMEGA720JS | 12      | 46       |
| ALUMEGA840JS | 14      | 54       |

#### **MEGABOLT**


|      | total fastening |  |  |  |  |
|------|-----------------|--|--|--|--|
| н    | MEGABOLT Ø12    |  |  |  |  |
| [mm] | [pcs]           |  |  |  |  |
| 240  | 4               |  |  |  |  |
| 360  | 6               |  |  |  |  |
| 480  | 8               |  |  |  |  |
| 600  | 10              |  |  |  |  |
| 720  | 12              |  |  |  |  |
| 840  | 14              |  |  |  |  |

<sup>(3)</sup>The use of LBS HARDWOOD EVO screws is mandatory.

<sup>(5)</sup>The use of LBS HARDWOOD EVO screws is mandatory.

# ■ INSTALLATION | **ALUMEGA HP**

# MINIMUM DISTANCES AND DIMENSIONS

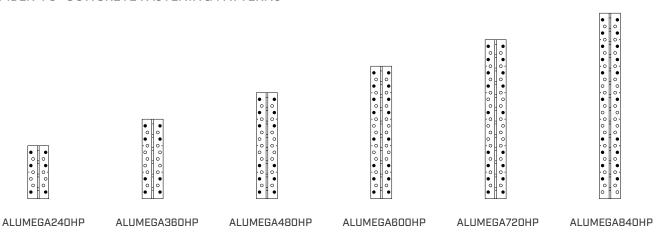


Primary beam height  $H_H \ge H + 90$  mm, where H is the connector height.

The spacing between connectors refers to timber elements with density  $\rho_k \le 420 \text{ kg/m}^3$ , screws inserted without pre-drilling hole and for stresses  $F_v$  and  $F_{up}$ . For other configurations refer to ETA-23/0824.

### **ALUMEGA HP - minimum distances**

|                     |                  |      | HBS PLATE Ø10 |                                                                                 |        |       |  |  |  |
|---------------------|------------------|------|---------------|---------------------------------------------------------------------------------|--------|-------|--|--|--|
| main element-timber |                  |      |               | column beam load-to-grain angle $\alpha$ = 0° load-to-grain angle $\alpha$ = 90 |        |       |  |  |  |
| screw-screw         | $a_1$            | [mm] | -             | -                                                                               | ≥ 5·d  | ≥ 50  |  |  |  |
| screw-unloaded end  | a <sub>3,c</sub> | [mm] | ≥ 7·d         | ≥ 70                                                                            | -      | -     |  |  |  |
| screw-stressed edge | a <sub>4,t</sub> | [mm] | -             | -                                                                               | ≥ 10·d | ≥ 100 |  |  |  |
| screw-unloaded edge | a <sub>4.c</sub> | [mm] | ≥ 3,6·d       | ≥ 36                                                                            | ≥ 5·d  | ≥ 50  |  |  |  |


### ALUMEGA HP - side-by-side connectors

|              |                |      | single connector | double connector | triple connector |
|--------------|----------------|------|------------------|------------------|------------------|
| column width | H <sub>c</sub> | [mm] | 139              | 256              | 373              |

| concrete                  |                   |      | chemical anchor<br>VIN-FIX Ø12 |
|---------------------------|-------------------|------|--------------------------------|
| minimum support thickness | h <sub>min</sub>  | [mm] | $h_{ef} + 30 \ge 100$          |
| concrete hole diameter    | $d_0$             | [mm] | 14                             |
| tightening torque         | T <sub>inst</sub> | [Nm] | 40                             |

h<sub>ef</sub> = effective anchoring depth in concrete

### TIMBER-TO-CONCRETE FASTENING PATTERNS



Depending on stress, minimum concrete thickness and edge distances, different fastening patterns can be used; we recommend using the free Concrete Anchors software (www.rothoblaas.com).

# ■ INSTALLATION | ALUMEGA HV

### MINIMUM DISTANCES AND DIMENSIONS

total fastening on column total fastening on main beam side-by-side connectors side-by-side connectors a<sub>2,CG</sub> a<sub>2.CG</sub> a<sub>1,CG</sub> az,ce СН 0 0 0 0  $H_H$ Н 0 95 mm | 95 mm | 95 mm 95 mm 95 mm 95 mm ≥ 18 mm  $B_{H}$ ≥ 18 mm ≥ 10 mm ≥ 10 mm ≥ 10 mm ≥ 10 mm B<sub>c</sub> Нс

# **ALUMEGA HV - single connector**

|      | VGS Ø9 x 180     |                  |                | VGS Ø9 x 240 |                  |       | VGS Ø9 x 300 |                  |       |
|------|------------------|------------------|----------------|--------------|------------------|-------|--------------|------------------|-------|
| Н    | column           | main beam        |                | column       | main beam        |       | column       | main beam        |       |
|      | $B_c \times H_c$ | $B_H \times H_H$ | c <sub>H</sub> | $B_c x H_c$  | $B_H \times H_H$ | $c_H$ | $B_c x H_c$  | $B_H \times H_H$ | $c_H$ |
| [mm] | [mm]             | [mm]             | [mm]           | [mm]         | [mm]             | [mm]  | [mm]         | [mm]             | [mm]  |
| 240  | 118 x 132        | 118 x 328        |                | 159 x 132    | 159 x 371        |       | 201 x 132    | 201 x 413        |       |
| 360  | 118 x 132        | 118 x 448        |                | 159 x 132    | 159 x 491        |       | 201 x 132    | 201 x 533        |       |
| 480  | 118 x 132        | 118 x 568        | 88             | 159 x 132    | 159 x 611        | 171   | 201 x 132    | 201 x 653        | 177   |
| 600  | 118 x 132        | 118 x 688        | 88             | 159 x 132    | 159 x 731        | 131   | 201 x 132    | 201 x 773        | 173   |
| 720  | 118 x 132        | 118 x 808        |                | 159 x 132    | 159 x 851        |       | 201 x 132    | 201 x 893        |       |
| 840  | 118 x 132        | 118 x 928        |                | 159 x 132    | 159 x 971        |       | 201 x 132    | 201 x 1013       |       |

### **ALUMEGA HV - minimum distances**

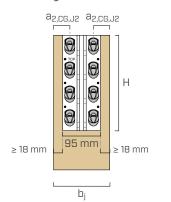
| main element-timber    |                   |      | VGS     | Ø9   |
|------------------------|-------------------|------|---------|------|
| screw-screw            | a <sub>1</sub>    | [mm] | ≥ 5·d   | ≥ 45 |
| screw-screw            | a <sub>2</sub>    | [mm] | ≥ 5·d   | ≥ 45 |
| screw-column end       | a <sub>1,CG</sub> | [mm] | ≥ 8,4·d | ≥ 76 |
| beam/column screw-edge | a <sub>2,CG</sub> | [mm] | ≥ 4·d   | ≥ 36 |

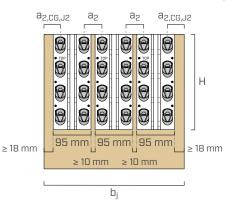
#### ALUMEGA HV - side-by-side connectors

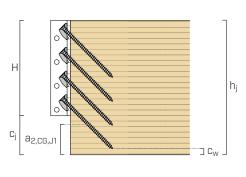
|              |                |      | single connector | double connector | triple connector |
|--------------|----------------|------|------------------|------------------|------------------|
| column width | H <sub>c</sub> | [mm] | 132              | 237              | 342              |

#### NOTES

- The distances  ${\rm a}_{\rm 1,CG}$  and  ${\rm a}_{\rm 2,CG}$  refer to the centre of gravity of the threaded part of the screw in the timber element.
- In addition to the stated minimum distances  $a_{1,CG}$  and  $a_{2,CG}$ , it is recommended to use a  $c_W \ge 10$  mm timber cover.
- The minimum length of VGS screws is 180 mm


• The spacing between connectors refers to timber elements with density  $\rho_k \leq 420 \ kg/m^3$ , screws inserted without pre-drilling hole and for stresses  $F_v, \ F_{ax}$  and  $F_{up}.$  For other configurations refer to ETA-23/0824.


# ■ INSTALLATION | ALUMEGA JV


### MINIMUM DISTANCES AND DIMENSIONS

#### total fastening on secondary beam single connector

#### total fastening on secondary beam side-by-side connectors







# ALUMEGA JV - single connector

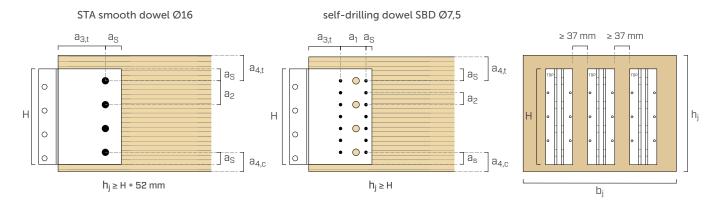
| ш    | VGS Ø9 x 180                    |                | VGS Ø9 x 240                    | VGS Ø9 x 300 |                                 |                |
|------|---------------------------------|----------------|---------------------------------|--------------|---------------------------------|----------------|
|      | b <sub>j</sub> x h <sub>j</sub> | c <sub>j</sub> | b <sub>j</sub> x h <sub>j</sub> | $c_j$        | b <sub>j</sub> x h <sub>j</sub> | c <sub>j</sub> |
| [mm] | [mm]                            | [mm]           | [mm]                            | [mm]         | [mm]                            | [mm]           |
| 240  | 132 x 333                       |                | 132 x 376                       |              | 132 x 418                       | 178            |
| 360  | 132 x 453                       |                | 132 x 496                       |              | 132 x 538                       |                |
| 480  | 132 x 573                       | 93             | 132 x 616                       | 136          | 132 x 658                       |                |
| 600  | 132 x 693                       | 93             | 132 x 736                       | 130          | 132 x 778                       |                |
| 720  | 132 x 813                       |                | 132 x 856                       |              | 132 x 898                       |                |
| 840  | 132 x 933                       |                | 132 x 976                       |              | 132 x 1018                      |                |

#### **ALUMEGA JV - minimum distances**

| secondary beam-timber |                      |      | VGS     | S Ø 9 |
|-----------------------|----------------------|------|---------|-------|
| screw-screw           | a <sub>2</sub>       | [mm] | ≥ 5·d   | ≥ 45  |
| screw-beam edge       | a <sub>2,CG,J1</sub> | [mm] | ≥ 8,4·d | ≥ 76  |
| screw-beam edge       | a <sub>2,CG,J2</sub> | [mm] | ≥ 4·d   | ≥ 36  |

### **ALUMEGA JV - single connector**

|                      |    |      | single connector | double connector | triple connector |
|----------------------|----|------|------------------|------------------|------------------|
| secondary beam width | bj | [mm] | 132              | 237              | 342              |

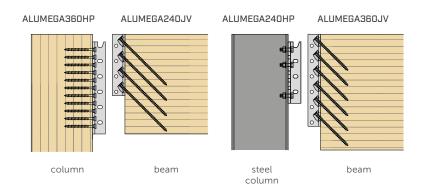

#### NOTES

- The distances  $a_{2,CG,J1}$  and  $a_{2,CG,J2}$  refer to the centre of gravity of the threaded part of the screw in the timber element.
- In addition to the minimum distance  $a_{2,\text{CG},\text{J1}}$  indicated, it is recommended to use a  $c_W \ge 10$  mm timber cover.
- The minimum length of VGS screws is 180 mm.

• The spacing between connectors refers to timber elements with density  $\rho_k \leq 420 \; kg/m^3$ , screws inserted without pre-drilling hole and for stresses  $F_{V'}$   $F_{aX}$  and  $F_{up}.$  For other configurations refer to ETA-23/0824.

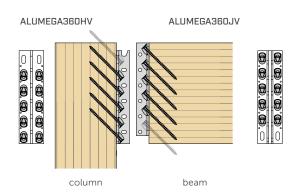
# INSTALLATION | ALUMEGA JS

#### MINIMUM DISTANCES AND DIMENSIONS




Spacing between ALUMEGA JS side-by-side ≥ 37 mm meets the minimum spacing requirement of 10 mm between HV connectors on beam and column. If the JS connector is attached to an HP connector on beam and column, the minimum spacing between connectors is 49 mm.

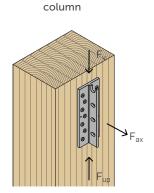
| secondary beam-timber |                               |      |                             | SBD Ø7,5    | STA Ø16 |
|-----------------------|-------------------------------|------|-----------------------------|-------------|---------|
| dowel-dowel           | a <sub>1</sub> <sup>(1)</sup> | [mm] | ≥ 3·d   ≥ 5·d               | ≥ 23   ≥ 38 | -       |
| dowel-dowel           | a <sub>2</sub>                | [mm] | ≥ 3·d                       | ≥ 23        | ≥ 48    |
| dowel-beam end        | a <sub>3,t</sub>              | [mm] | max (7 d; 80 mm)            | ≥ 80        | ≥ 112   |
| dowel-top of beam     | a <sub>4,t</sub>              | [mm] | ≥ 4·d                       | ≥ 30        | ≥ 64    |
| dowel-bottom of beam  | a <sub>4,c</sub>              | [mm] | ≥ 3·d                       | ≥ 23        | ≥ 48    |
| dowel-bracket edge    | a <sub>s</sub> (2)            | [mm] | $\geq 1, 2 \cdot d_0^{(3)}$ | ≥ 10        | ≥ 21    |

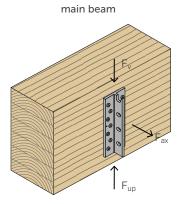

#### (3) Hole diameter.

### ASSEMBLY OF CONNECTORS OF DIFFERENT HEIGHTS



A secondary beam connector (JV and JS) may be attached to a main element connector (HV and HP) of a different height. The configurations shown allow for balancing the strengths between the HP and JV connectors, and limit the extension of the inclined screws beyond the outline of the connectors (example on the left). The final strength is the minimum between the strength of the connectors and the bolts.

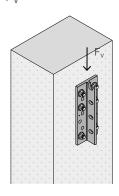

# PARTIAL FASTENING FOR HV AND JV CONNECTORS




Partial fastening is permitted for the HV and JV connectors by omitting the first and last row of screws, respectively. This configuration is particularly favourable for beam-to-column connections, with the column extrados aligned with the beam extrados.

<sup>(1)</sup> Spacing between SBD dowels parallel to the fibre for load-to-grain angle  $\alpha = 90^{\circ}$  ( $F_{v}$  or  $F_{up}$  stress) and  $\alpha = 0^{\circ}$  ( $F_{ax}$  stress) respectively. (2) It is advisable to pay special attention to the positioning of the SBD dowels with respect to the distance from the bracket edge, using a pilot hole if necessary.

# lacksquare STRUCTURAL VALUES | **ALUMEGA HP** | $F_v$ | $F_{ax}$ | $F_{up}$

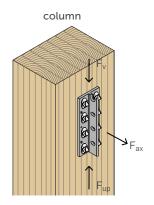


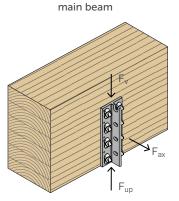



|      |                                                    |                   | $R_{ax,k}$        |                   |                          |                 |                          |                 |                          |                           |
|------|----------------------------------------------------|-------------------|-------------------|-------------------|--------------------------|-----------------|--------------------------|-----------------|--------------------------|---------------------------|
|      | R <sub>v,k timber</sub> - R <sub>up,k timber</sub> |                   |                   |                   | $R_{v,l}$                | k alu           | R <sub>up</sub> ,        | k alu           | R <sub>ax,k timber</sub> | R <sub>ax,k alu</sub> (1) |
|      | colı                                               | umn               | main<br>beam      |                   | total per bolt fastening |                 | total per bolt fastening |                 |                          |                           |
| Н    | HBSP<br>Ø10 x 100                                  | HBSP<br>Ø10 x 180 | HBSP<br>Ø10 x 100 | HBSP<br>Ø10 x 180 | MEGABOLT<br>M12          | MEGABOLT<br>M12 | MEGABOLT<br>M12          | MEGABOLT<br>M12 | HBSP<br>Ø10 x 180        | Total                     |
| [mm] | [kN]                                               | [kN]              | [kN]              | [kN]              | [kN]                     | [kN]            | [kN]                     | [kN]            | [kN]                     | [kN]                      |
| 240  | 89                                                 | 118               | 106               | 142               | 188                      | 47,0            | 139                      | 46,3            | 159                      | 100                       |
| 360  | 137                                                | 179               | 172               | 227               | 286                      | 47,7            | 237                      | 47,4            | 239                      | 167                       |
| 480  | 182                                                | 238               | 237               | 311               | 384                      | 48,0            | 335                      | 47,9            | 315                      | 223                       |
| 600  | 226                                                | 295               | 302               | 395               | 483                      | 48,3            | 433                      | 48,2            | 390                      | 279                       |
| 720  | 269                                                | 350               | 367               | 479               | 581                      | 48,4            | 532                      | 48,3            | 463                      | 335                       |
| 840  | 311                                                | 405               | 432               | 562               | 679                      | 48,5            | 630                      | 48,5            | 535                      | 391                       |

<sup>(1)</sup>Strength referred to total fastening with MEGABOLT M12.

# ■ STRUCTURAL VALUES | ALUMEGA HP | F<sub>v</sub>

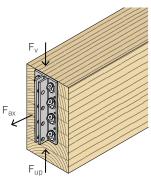




| CONNECTOR  |                             | R <sub>v,d concrete</sub> |       |       |       |       |       |  |  |
|------------|-----------------------------|---------------------------|-------|-------|-------|-------|-------|--|--|
|            |                             | H=240                     | H=360 | H=480 | H=600 | H=720 | H=840 |  |  |
|            | fastening                   | [kN]                      | [kN]  | [kN]  | [kN]  | [kN]  | [kN]  |  |  |
| ALUMEGA HP | VIN-FIX anchor<br>Ø12 x 245 | 157                       | 213   | 322   | 429   | 486   | 541   |  |  |

#### NOTES

- In the calculation, C25/30 concrete with thin reinforcement was considered in the absence of distances from the edge.
- Chemical anchor VIN-FIX according to ETA-20/0363 with threaded rods (type INA) of minimum steel class 8.8 with  $\rm h_{ef}=225~mm.$
- The design values are according to EN 1992:2018 with  $\alpha_{\text{SUS}}$  = 0,6.
- The values in the table are design values referring to the dowelling patterns on page 102.
- Aluminium-side strength must be verified in accordance with ETA-23/0824.
- Refer to ETA-23/0824 for the calculation of  $\rm F_{ax,d}, \, F_{up,d}$  and  $\rm F_{lat,d}.$

# ■ STRUCTURAL VALUES | **ALUMEGA HV** | F<sub>v</sub> | F<sub>ax</sub> | F<sub>up</sub>






|      |                                   |                 |                        | $R_{v,k}$                |                 |                 |                              | R <sub>up,k</sub>     |                 |                              |
|------|-----------------------------------|-----------------|------------------------|--------------------------|-----------------|-----------------|------------------------------|-----------------------|-----------------|------------------------------|
|      |                                   | $R_{v,k}$       | screw                  |                          | R <sub>v</sub>  | ,k alu          | R <sub>ax,k timber</sub> (3) | R <sub>ax,k alu</sub> |                 | R <sub>up,k timber</sub> (2) |
|      | R <sub>v,k timber</sub> (1)(2)(4) |                 | R <sub>tens,45,k</sub> | total per bolt fastening |                 |                 | total<br>fastening           | per bolt              |                 |                              |
| Н    | VGS<br>Ø9 x 180                   | VGS<br>Ø9 x 240 | VGS<br>Ø9 x 300        | VGS Ø9                   | MEGABOLT<br>M12 | MEGABOLT<br>M12 | VGS Ø9                       | MEGABOLT<br>M12       | MEGABOLT<br>M12 | VGS Ø9                       |
| [mm] | [kN]                              | [kN]            | [kN]                   | [kN]                     | [kN]            | [kN]            | [kN]                         | [kN]                  | [kN]            | [kN]                         |
| 240  | 122                               | -               | -                      | 179                      | 188             | 47,0            | 38 + 0,8·F <sub>v,Ek</sub>   | 100                   | 33,4            | 32                           |
| 360  | 166                               | -               | -                      | 244                      | 286             | 47,7            | 57 + 0,8·F <sub>v,Ek</sub>   | 167                   | 33,4            | 48                           |
| 480  | 221                               | 308             | -                      | 325                      | 384             | 48,0            | 76 + 0,8·F <sub>v,Ek</sub>   | 234                   | 33,4            | 64                           |
| 600  | 276                               | 385             | -                      | 406                      | 483             | 48,3            | 94 + 0,8·F <sub>v,Ek</sub>   | 300                   | 33,4            | 80                           |
| 720  | 332                               | 463             | 593                    | 488                      | 581             | 48,4            | 113 + 0,8·F <sub>v,Ek</sub>  | 367                   | 33,4            | 96                           |
| 840  | 387                               | 540             | 692                    | 569                      | 679             | 48,5            | 132 + 0,8·F <sub>v,Ek</sub>  | 434                   | 33,4            | 112                          |

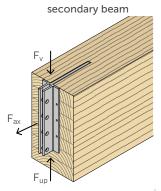
# $\blacksquare$ STRUCTURAL VALUES | **ALUMEGA JV** | $F_v$ | $F_{ax}$ | $F_{up}$





|      |                                   |                 |                        | $R_{v,k}$                |                 |                 |                              | $R_{up,k}$            |                 |                              |
|------|-----------------------------------|-----------------|------------------------|--------------------------|-----------------|-----------------|------------------------------|-----------------------|-----------------|------------------------------|
|      |                                   | $R_{v,k}$       | screw                  |                          | R <sub>v</sub>  | ,k alu          | R <sub>ax,k timber</sub> (3) | R <sub>ax,k alu</sub> |                 | R <sub>up,k timber</sub> (2) |
|      | R <sub>v,k timber</sub> (1)(2)(4) |                 | R <sub>tens,45,k</sub> | total per bolt fastening |                 |                 | total<br>fastening           | per bolt              |                 |                              |
| Н    | VGS<br>Ø9 x 180                   | VGS<br>Ø9 x 240 | VGS<br>Ø9 x 300        | VGS Ø9                   | MEGABOLT<br>M12 | MEGABOLT<br>M12 | VGS Ø9                       | MEGABOLT<br>M12       | MEGABOLT<br>M12 | VGS Ø9                       |
| [mm] | [kN]                              | [kN]            | [kN]                   | [kN]                     | [kN]            | [kN]            | [kN]                         | [kN]                  | [kN]            | [kN]                         |
| 240  | 122                               | -               | -                      | 179                      | 188             | 47,0            | 29 + 0,8·F <sub>v,Ek</sub>   | 100                   | 33,4            | 18                           |
| 360  | 166                               | -               | -                      | 244                      | 286             | 47,7            | 44 + 0,8·F <sub>v,Ek</sub>   | 167                   | 33,4            | 26                           |
| 480  | 221                               | 308             | -                      | 325                      | 384             | 48,0            | $59 + 0.8 \cdot F_{v,Ek}$    | 234                   | 33,4            | 35                           |
| 600  | 276                               | 385             | -                      | 406                      | 483             | 48,3            | $73 + 0.8 \cdot F_{v,Ek}$    | 300                   | 33,4            | 44                           |
| 720  | 332                               | 463             | 593                    | 488                      | 581             | 48,4            | 88 + 0,8·F <sub>v,Ek</sub>   | 367                   | 33,4            | 53                           |
| 840  | 387                               | 540             | 692                    | 569                      | 679             | 48,5            | 103 + 0,8·F <sub>v,Ek</sub>  | 434                   | 33,4            | 62                           |

# NOTES


 $<sup>^{(1)}</sup>$  For intermediate values of the screw length, it is possible to interpolate the resistance linearly.

<sup>(2)</sup> The  $R_{v,k}$  timber and Rup,k timber strengths for partial fastening can be determined by multiplying by the following ratio: (number of screws for partial fastening)/(number of screws for total fastening).

 $<sup>^{(3)}\,</sup>F_{v,Ek}$  is the characteristic permanent action in the  $F_v$  direction. The design value is derived according to EN 1990  $F_{v,Ed} = F_{v,Ed} = F_{v,Ek} \gamma_{G,inf}$ 

 $<sup>^{(4)}</sup>$  The test campaign for ETA-23/0824 resulted in the certification of all ALUME-GA HV and JV models with screw lengths up to 520 mm. To increase safety in the event of incorrect installation, the use of connectors with short screws is preferred. In any case, it is recommended to drill a guide hole with JIG VGU and insert screws with controlled torque (max. 20 Nm) using TORQUE LIMI-TER or BEAR torque wrench.

# STRUCTURAL VALUES | **ALUMEGA JS** F<sub>v</sub> | F<sub>ax</sub> | F<sub>up</sub>



|      |                                                    |                   | $R_{v_i}$            | k   R <sub>up,k</sub> |                       |                 | $R_{ax,k}$               |                   |                       |                 |
|------|----------------------------------------------------|-------------------|----------------------|-----------------------|-----------------------|-----------------|--------------------------|-------------------|-----------------------|-----------------|
|      | R <sub>v,k timber</sub> - R <sub>up,k timber</sub> |                   | R <sub>v,k alu</sub> |                       | R <sub>up,k alu</sub> |                 | R <sub>ax,k timber</sub> |                   | R <sub>ax,k alu</sub> |                 |
|      |                                                    |                   | total<br>fastening   | per bolt              | total<br>fastening    | per bolt        |                          |                   | total<br>fastening    | per bolt        |
| Н    | STA<br>Ø16 x 240                                   | SBD<br>Ø7.5 x 195 | MEGABOLT<br>M12      | MEGABOLT<br>M12       | MEGABOLT<br>M12       | MEGABOLT<br>M12 | STA<br>Ø16 x 240         | SBD<br>Ø7.5 x 195 | MEGABOLT<br>M12       | MEGABOLT<br>M12 |
| [mm] | [kN]                                               | [kN]              | [kN]                 | [kN]                  | [kN]                  | [kN]            | [kN]                     | [kN]              | [kN]                  | [kN]            |
| 240  | 77                                                 | 107               | 188                  | 47,0                  | 139                   | 46,3            | 164                      | 206               | 100                   | 33,4            |
| 360  | 142                                                | 206               | 286                  | 47,7                  | 237                   | 47,4            | 245                      | 323               | 167                   | 33,4            |
| 480  | 206                                                | 314               | 384                  | 48,0                  | 335                   | 47,9            | 327                      | 441               | 234                   | 33,4            |
| 600  | 269                                                | 425               | 483                  | 48,3                  | 433                   | 48,2            | 409                      | 558               | 300                   | 33,4            |
| 720  | 331                                                | 534               | 581                  | 48,4                  | 532                   | 48,3            | 491                      | 676               | 367                   | 33,4            |
| 840  | 394                                                | 643               | 679                  | 48,5                  | 630                   | 48,5            | 573                      | 794               | 434                   | 33,4            |

#### NOTES

- $\bullet\,\,$  The values provided are calculated with a routing in the 12 mm thick timber.
- The values provided are in accordance with the patterns on page 105. For SBD dowels  $a_1=64$  mm,  $a_{3,t}=80$  mm,  $a_{8}=15$  mm (side bracket edge) and  $a_{8}=30$  mm (bottom/top bracket edge).
- STA smooth dowel Ø16:  $M_{y,k}$  = 191000 Nmm.
- SBD self-drilling dowels  $\emptyset$ 7,5:  $M_{y,k}$  = 75000 Nmm.

#### **GENERAL PRINCIPLES**

- The dimensions indicated in the installation section are minimum dimensions
  of structural elements, for screws inserted without pre-drilling hole, and do
  not take fire resistance requirements into account.
- For the calculation process a timber characteristic density  $\rho_k$  = 385 kg/m  $^3$  has been considered.
- The coefficients  $k_{\mbox{mod}}, \gamma_{\mbox{M}}$  and  $\gamma_{\mbox{M2}}$  should be taken according to the current regulations used for the calculation.
- Dimensioning and verification of timber and concrete elements must be carried out separately.
- Characteristic values are consistent with EN 1995-1-1, EN 1999-1-1 and in accordance with ETA-23/0824.
- The following verification shall be satisfied for combined loading:

$$\left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 + \left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{up,d}}{R_{up,d}}\right)^2 + \left(\frac{F_{lat,d}}{R_{lat,d}}\right)^2 \le 1$$

 $F_{V,d}$  and  $F_{Up,d}$  are forces acting in opposite directions. Therefore only one of the forces  $F_{V,d}$  and  $F_{Up,d}$  can act in combination with the forces  $F_{ax,d}$  or  $F_{lat,d}$ . Refer to ETA-23/0824 for the calculation of  $F_{lat,d}$ .

- The F<sub>ax,d</sub> strength is activated as a result of the initial sliding given by the slotted holes, refer to the TENSILE STRENGTH section on page 111.
- Refer to ETA-23/0824 for the sliding modulus.
- ETA-23/0824 does not cover eccentricity in  $F_{\rm v}$  loads, which means the application of torque on the connection. Designers should evaluate whether to use an additional fastening system or ALUMEGA connectors placed side by side.

#### SIDE-BY-SIDE CONNECTORS

- Particular attention must be paid to alignment during installation, in order to avoid different stresses between connectors. The use of the JIGALUMEGA assembly template is recommended.
- The total strength of a connection consisting of up to three side-by-side connectors is the sum of the strength of the individual connectors.

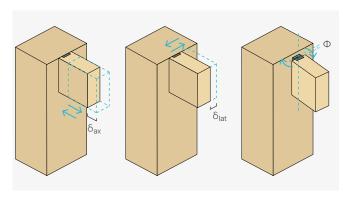
# ALUMEGA HP-ALUMEGA JS

Design values can be obtained from characteristic values as follows:

$$\begin{split} R_{v,d} = min \; & \left\{ \begin{array}{l} \frac{R_{v,k \; timber} \cdot k_{mod}}{Y_{M}} \\ \frac{R_{v,k \; alu}}{Y_{M2}} \end{array} \right. \qquad R_{up,d} = min \; \left\{ \begin{array}{l} \frac{R_{up,k \; timber} \cdot k_{mod}}{Y_{M}} \\ \frac{R_{up,k \; alu}}{Y_{M2}} \end{array} \right. \\ R_{ax,d} = min \; & \left\{ \begin{array}{l} \frac{R_{ax,k \; timber} \cdot k_{mod}}{Y_{M}} \\ \frac{R_{ax,k \; alu}}{Y_{M}} \end{array} \right. \end{split}$$

- For  $F_{ax}$  stresses, the splitting of the main beam or column caused by forces perpendicular to the fibre (ALUMEGA HP) must be checked separately.
- The end of the secondary beam must be in contact with the wing of the JS connector.

#### ALUMEGA HV-ALUMEGA JV


Design values can be obtained from characteristic values as follows:

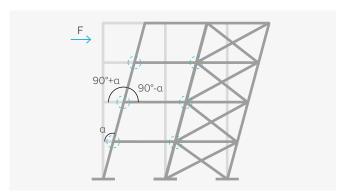
$$R_{v,d} = min \begin{cases} \frac{R_{v,k \; timber} \cdot k_{mod}}{\gamma_{M}} & R_{up,d} = \frac{R_{up,k \; timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{tens,45,k}}{\gamma_{M2}} & \gamma_{M} \\ \frac{R_{v,k \; alu}}{\gamma_{M2}} & \gamma_{M2} \end{cases}$$

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k \ timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{ax,k \ alu}}{\gamma_{M2}} \end{cases}$$


### MAIN CHARACTERISTICS

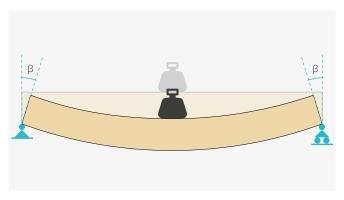
#### **ASSEMBLY TOLERANCE**




It offers the greatest assembly tolerance of any highstrength connector on the market:  $\delta_{ax} = 8 \text{ mm } (\pm 4 \text{ mm}),$  $\delta_{lat} = 3 \text{ mm } (\pm 1.5 \text{ mm}) \text{ e } \Phi = \pm 6^{\circ}.$ 

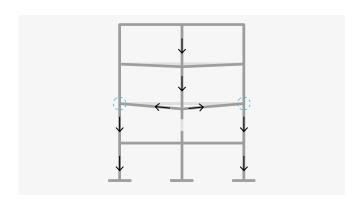
### **MODULARITY**




Available in 6 standard sizes (heights); the height H can be changed due to the modular connector geometry. In addition, connectors can be placed side-by-side to meet geometric or strength requirements.

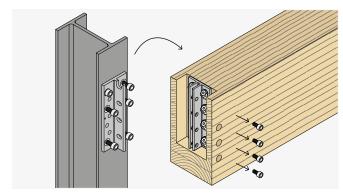
### INTER-STOREY DRIFT FOR HORIZONTAL ACTIONS




The rotation of the connector is compatible with the inter-storey drift caused by earthquake or wind actions and helps reducing momentum transfer and structural damage.

### **ROTATION FOR GRAVITATIONAL LOADS**



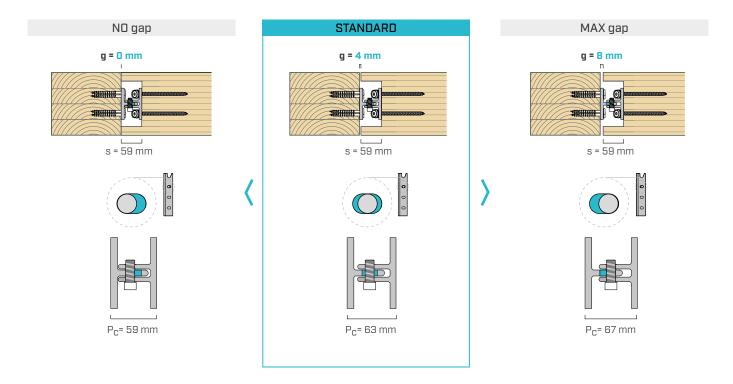

For gravitational loads, the connector has a hinged structural behaviour and ensures free rotation at the ends of the beam.

#### **STRUCTURAL STRENGTH**



The connector withstands high axial tensile forces, allowing the catenary effect to develop in accidental situations. This contributes to the structural strength of the building, ensuring greater safety and resistance.

#### **DISASSEMBLY**




Particularly suitable for facilitating the dismantling of temporary structures or structures that have reached the end of their useful life. The connection with ALUMEGA can be easily disassembled by removing the MEGABOLT bolts, thus simplifying the separation of components (Design for Disassembly).

### INSTALLATION CONFIGURATIONS

The standard configuration for the manufacture of timber elements consists in a nominal 4 mm gap.

On site, a variety of configurations can occur between the two limiting cases: zero gap and maximum 8 mm gap.



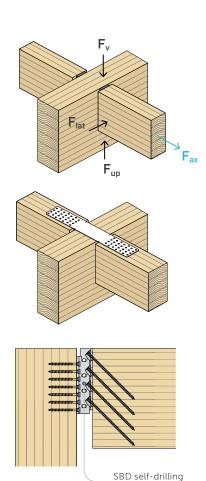
If it is required to limit the gap in the construction, for example due to fire resistance requirements of the connection, the depth of the routing in the secondary beam can be modified. As the depth of the routing increases, the gap between the secondary beam and the primary element is reduced and, at the same time, the axial installation tolerance is reduced. The limit case, for which particular precision during assembly is required, is achieved with a routing depth of 67 mm and zero axial installation gap/tolerance.

| routing<br>depth<br>s | assembled connectors size  P <sub>C</sub> [mm] |          |          |          |          |          |          |          |          |  |
|-----------------------|------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| [mm]                  | 59                                             | 60       | 61       | 62       | 63       | 64       | 65       | 66       | 67       |  |
| 59                    | g = 0 mm                                       | g = 1 mm | g = 2 mm | g = 3 mm | g = 4 mm | g = 5 mm | g = 6 mm | g = 7 mm | g = 8 mm |  |
| 61                    | -                                              | -        | g = 0 mm | g = 1 mm | g = 2 mm | g = 3 mm | g = 4 mm | g = 5 mm | g = 6 mm |  |
| 63                    | -                                              | -        | -        | -        | g = 0 mm | g = 1 mm | g = 2 mm | g = 3 mm | g = 4 mm |  |
| 65                    | -                                              | -        | -        | -        | -        | -        | g = 0 mm | g = 1 mm | g = 2 mm |  |
| 67                    | -                                              | -        | -        | -        | -        | -        | -        | -        | g = 0 mm |  |

Fire resistance requirements can be met by limiting the gap or by using dedicated products for fire protection of metal elements, such as FIRE STRIPE GRAPHITE, FIRE SEALING SILICONE, MS SEAL and FIRE SEALING ACRYLIC.

#### INTELLECTUAL PROPERTY

• Some ALUMEGA models are protected by the following Registered Community Designs: RCD 015032190-0002 | RCD 015032190-0003 | RCD


015032190-0004 | RCD 015032190-0005 | RCD 015032190-0006 | RCD 015032190-0007 | RCD 015032190-0008 | RCD 015032190-0009.

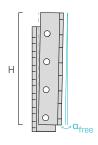
### TENSILE STRENGTH

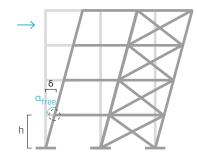
The strength values  $F_{ax}$  are valid as a result of the initial sliding given by the horizontally slotted holes in the ALUMEGA HP and HV connectors. If there are design requirements according to which the connection must be able to withstand tensile stress without initial sliding or limited initial sliding, one of the following options is recommended:

- In the case of a concealed connection, it is possible to modify the depth of the routing in the secondary beam (or in the column) in such a way that the axial sliding is entirely or partially reduced. Refer to the INSTALLATION CONFIGURATIONS section.
- Use an additional fastening system positioned at the top of the beam. Standard (e.g. WHT PLATE T) or customised metal plates as well as screw systems can be used, depending on the geometrical and strength requirements.
- · Once the connection assembly is complete, a SBD self-drilling dowel can be inserted in the middle of the assembled connectors. It is advisable to pay particular attention to the positioning of the dowel, ensuring that the functionality and capacity of the MEGABOLT bolts and VGU washers are not interfered with and compromised, possibly using a pilot hole.

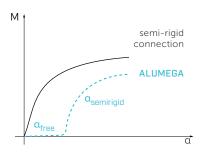
The proposed solutions can change the rotational stiffness of the connection and its hinge behaviour.



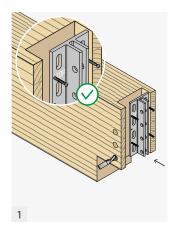

#### ROTATIONAL COMPATIBILITY


The ALUMEGA HV and HP connectors have horizontally slotted holes, which not only offer installation tolerance, but also allow free rotation of the connection. The table shows the maximum free rotation  $\alpha_{\text{free}}$  of the connection and the respective storey-drift, as a function of the height H of the connector. The connector, once it has reached  $\alpha_{\text{free}}$  rotation has a further  $\alpha_{\text{semi-rigid}}$  rotation before failure. Rotation  $\alpha_{\text{semi-rigid}}$  occurs due to the deformation of the aluminium connector and its fastening.

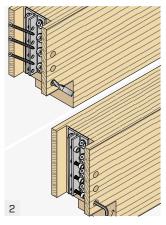
The moment-rotation graph shows a comparison between the theoretical behaviour of a connection with ALUMEGA and that of a common semi-rigid connection.


For a connection with ALUMEGA, it is possible to assume a first phase, the extension of which is a function of H, in which the behaviour is hingelike; in a second phase, semi-rigid behaviour can be assumed.

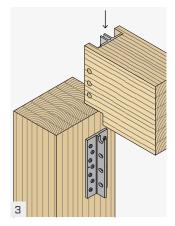
It should be pointed out that free rotation takes place without deformation or damage to the aluminium and fasteners, and that the above assessments are to be confirmed experimentally. See www.rothoblaas.com for updates.



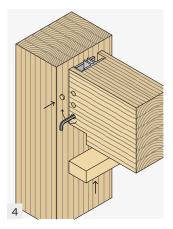






### "TOP-DOWN" INSTALLATION WITH ROUTING IN THE SECONDARY BEAM

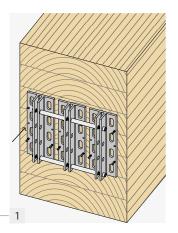



Make the routing in the secondary beam and drill the holes (min. Ø25) for the MEGABOLT bolts. Position the ALUMEGA JV connector on the secondary beam paying particular attention to the correct orientation with reference to the "TOP" marking on the connector. Fasten the Ø5 LBS HARDWOOD EVO positioning screws.

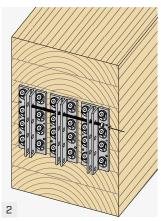


Place the VGU washer in the slotted hole and, using the JIG-VGU jig, drill a Ø5 pilot hole with a minimum length of 50 mm. Install the VGS screw and respect the 45° angle of insertion. Insert the MEGABOLT bolts in the following way: the first bolt must pass completely through both cores of the connector, while the other bolts must only pass through the first core.

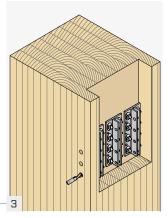



Position the ALUMEGA HP connector on the column, fasten the Ø5 LBS HARDWOOD EVO positioning screws (optional) and the HBS PLATE screws. Hook the secondary beam from top to bottom using the upper positioning notch in the ALUMEGA HP connector.

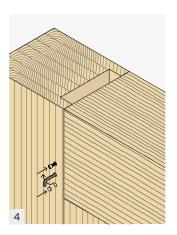



Fully tighten the MEGABOLT bolts with a 10 mm hexagonal wrench

Place the TAPS timber plugs in the circular holes and insert the closing board, hiding the connection for fire resistance requirements.

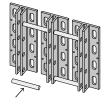

# "TOP-DOWN" INSTALLATION WITH ROUTING IN THE COLUMN

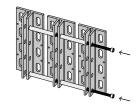



Place the three JV connectors assembled with template and bolts on the secondary beam. Once the Ø5 LBS HARDWOOD EVO positioning screws are fastened, remove the jigs and bolts.



Place the VGU washer in the slotted hole and, using the JIG-VGU jig, drill a Ø5 pilot hole with a minimum length of 50 mm. Install the VGS screw and respect the 45° angle of insertion. Insert the upper MEGABOLT bolt through the three JV connectors.





Make the routing in the column and drill the holes (min. Ø25) for the MEGABOLT bolts. Use the jig for positioning the ALUME-GA HV connectors. Fasten the Ø5 LBS HARDWOOD EVO positioning screws. Place the VGU washer in the slotted hole and, using the JIG-VGU jig, drill a Ø5 pilot hole with a minimum length of 50 mm. Install the VGS screw and respect the 45° angle of insertion.



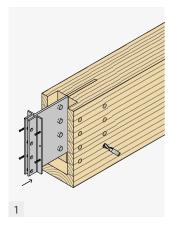
Hook the secondary beam from top to bottom using the upper positioning notch in the ALUMEGA HV connectors. Insert the remaining MEGABOLT

bolts and screw them in completely with a 10 mm hexagonal wrench.

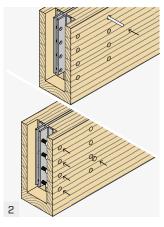




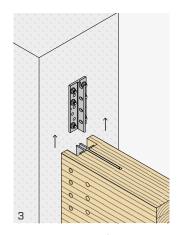
JIG INSTALLATION


Place the JV connectors side by side and position the jigs at two rows of M12 holes in the connectors. Insert the MEGABOLT bolts through the M12 threaded holes, taking care to maintain the alignment between connectors.

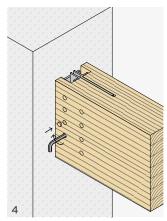
The use of the jig for HP and HV connectors is similar, it is recommended to use M12 nuts to avoid MEGABOLT bolts slipping out during installation.




0


# "BOTTOM-UP" INSTALLATION WITH ROUTING IN THE SECONDARY BEAM

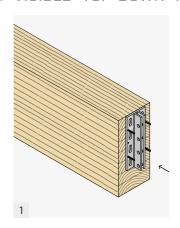



Carry out the routing at partial height in the secondary beam and drill the holes for the MEGABOLT bolts (min. Ø25) and the STA dowels Ø16. Position the ALUMEGA JS connector on the secondary beam paying particular attention to the correct orientation with reference to the "TOP" marking on the connector. Fasten the Ø5 LBS HARDWOOD EVO positioning screws (optional).

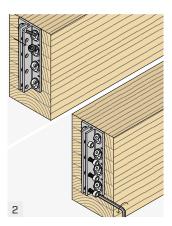


Insert STA dowels Ø16 and then close with TAPS timber plugs. Insert the MEGABOLT bolts through the first core of the connector.

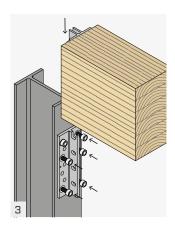



Place the ALUMEGA HP connector on concrete with INA threaded rods Ø12 and VIN-FIX resin, according to the installation instructions. Lift the secondary beam from the bottom upwards, and only screw the upper MEGABOLT bolt fully in when the ALUMEGA JS connector is positioned above the ALUMEGA HP connector.

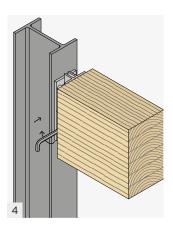



Hook the secondary beam from top to bottom using the upper positioning notch in the ALUMEGA HP connector.

Fully screw in the remaining MEGABOLT bolts with a 10 mm hexagonal wrench and insert the TAPS timber plugs into the round holes.


#### VISIBLE "TOP-DOWN" INSTALLATION




Place the ALUMEGA JV connector on the secondary beam, paying particular attention to the orientation according to the "TOP" marking on the connector. Then, fasten the Ø5 LBS HARD-WOOD EVO positioning screws.



Place the VGU washer in the slotted hole and, using the JIG-VGU jig, drill a Ø5 pilot hole with a minimum length of 50 mm. Install the VGS screw and respect the 45° angle of insertion. Insert the MEGABOLT bolts in the following way: the first bolt must pass completely through both cores of the connector, while the other bolts must only pass through the first core.



Fasten the ALUMEGA HP connector to steel using M12 bolts and washer, MEGABOLT bolts can be used. Hook the secondary beam from top to bottom using the upper positioning notch in the ALUMEGA HP connector.



Fully tighten the MEGABOLT bolts with a 10 mm hexagonal wrench.